Package: ebTobit 1.0.2

ebTobit: Empirical Bayesian Tobit Matrix Estimation

Estimation tools for multidimensional Gaussian means using empirical Bayesian g-modeling. Methods are able to handle fully observed data as well as left-, right-, and interval-censored observations (Tobit likelihood); descriptions of these methods can be found in Barbehenn and Zhao (2023) <doi:10.48550/arXiv.2306.07239>. Additional, lower-level functionality based on Kiefer and Wolfowitz (1956) <doi:10.1214/aoms/1177728066> and Jiang and Zhang (2009) <doi:10.1214/08-AOS638> is provided that can be used to accelerate many empirical Bayes and nonparametric maximum likelihood problems.

Authors:Alton Barbehenn [aut, cre], Sihai Dave Zhao [aut]

ebTobit_1.0.2.tar.gz
ebTobit_1.0.2.zip(r-4.5)ebTobit_1.0.2.zip(r-4.4)ebTobit_1.0.2.zip(r-4.3)
ebTobit_1.0.2.tgz(r-4.5-x86_64)ebTobit_1.0.2.tgz(r-4.5-arm64)ebTobit_1.0.2.tgz(r-4.4-x86_64)ebTobit_1.0.2.tgz(r-4.4-arm64)ebTobit_1.0.2.tgz(r-4.3-x86_64)ebTobit_1.0.2.tgz(r-4.3-arm64)
ebTobit_1.0.2.tar.gz(r-4.5-noble)ebTobit_1.0.2.tar.gz(r-4.4-noble)
ebTobit_1.0.2.tgz(r-4.4-emscripten)ebTobit_1.0.2.tgz(r-4.3-emscripten)
ebTobit.pdf |ebTobit.html
ebTobit/json (API)

# Install 'ebTobit' in R:
install.packages('ebTobit', repos = c('https://barbehenna.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/barbehenna/ebtobit/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:

On CRAN:

openblascppopenmp

2.70 score 1 stars 4 scripts 211 downloads 13 exports 3 dependencies

Last updated 9 months agofrom:f5544ad261. Checks:1 OK, 10 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 31 2025
R-4.5-win-x86_64NOTEJan 31 2025
R-4.5-mac-x86_64NOTEJan 31 2025
R-4.5-mac-aarch64NOTEJan 31 2025
R-4.5-linux-x86_64NOTEJan 31 2025
R-4.4-win-x86_64NOTEJan 31 2025
R-4.4-mac-x86_64NOTEJan 31 2025
R-4.4-mac-aarch64NOTEJan 31 2025
R-4.3-win-x86_64NOTEJan 31 2025
R-4.3-mac-x86_64NOTEJan 31 2025
R-4.3-mac-aarch64NOTEJan 01 2025

Exports:ConvexDualConvexPrimalebTobitEMis.ebTobitlik_GaussianPIClikMatnew_ebTobitposterior_L1mediod.ebTobitposterior_mean.ebTobitposterior_mode.ebTobittobit_sdtobit_sd_mle

Dependencies:RcppRcppArmadilloRcppParallel